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Abstraci— A consistent reformulation of the anisotropic perfectly
matched layer (APML) absorbing boundary has been presented for
general nonlinear dispersive media. The APML is then adopted in the
high-order finite-difference-based schemes, and improved absorption
has been achieved.
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1. INTRODUCTION

Time-domain numerical techniques are of primary impor-
tance in the analysis of nonlinear pulse propagation since the
principle of superposition no longer holds and frequency-
domain techniques are basically inapplicable.

In order to model the lincar and nonlinear dispersive re-
sponse functions such as the Lorentz dispersion and the Ra-
man effects, a z-transform technique [1], [2] and a convolu-
tion integral technique combined with a system of differen-
tial equations [3], [4], [5) have been employed. This convo-
lution technique formulates the relation between the polar-

. ization and the electric flux density, which saves some mem-
ory with the expense of solving a system of equations. The
auxiliary differential equation (ADE} technique has been ap-
plied to the formulation of the polarization current to avoid
the system of equations for the linear dispersion case [6] and
for a second-order nonlinear case [7].

We have implemented the nonlinear and dispersive
anisotropic perfectly matched layer (APML) [8], and more-
over, adopted the APML. in the high-order finite-difference
time-domain (FDTD) schemes of Maxwell’'s equations
based on the biorthogonal interpolating scaling function [9];
based only on the scaling function, the scheme is equivalent
to the FDTD schemes of high spatial-order derived by the
Taylor series expansion.

The formuiation of the material property is based on the
aforementioned ADE technique with modification to polar-
ization, and the constitutive equation in the FDTD scheme
is formulated by simple modification to the original APML
for lossy media [7]. In this paper, the performance of the ab-
sorption by the APML has been investigated for high-order
FDTD-based schemes.

II. THEORY

A. Discretization of Maxwell’s Equation for Linear and
Nonlinear Dispersive Media

We start with the two-dimensional TE polarized wave
propagating in the zz-plane cf the Cartesian coordinates rep-
resented by Maxwell’s equations
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where I denotes the electric flux density, £ the electric
field, H the magnetic field, and .J the source excitation cur-
rent. In order to obtain a consistent formulation both in the
APML and the normal media, contrary to the previously pro-
posed techniques [6], [7], polarization is used to represent
the dispersive and the nonlinear material properties. The
constitutive equation is written as ’

Dy — EOEOOEy + Plgh'nenr) + P?Snonlinear) , )

where gy is the dielectric constant of free space, £ is the
relative dielectric constant in the limit of infinite frequency.
The lingar and third-order nonlinear polarization of interest
are written respectively by

Pélinear) — EUX(I)Ey (5)
and

Py(,ncntinear) _ EOX(3)Ey , (6

where 1 denotes the linear susceptibility and x® the
third-order nonlinear susceptibility.

The time evolution equation of D and H is obtained by
the standard Yee’s leapfrog algorithm [10], i.e. for (1)
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where n is the time step index, ¢ and k are the space step
indices, and the space-time discrete value of electric or mag-
netic field Fe(z, z,t) for £ = x,y, z is defined by FP o=
Fe(iAz, kAz, nAt). Notation §H (u)'is the spatial discrete
derivative of the magnetic field

n+1/2
xi,k+1/2

Az

nt1/2 n+t1/2
Hz,H—l/Z,k - Hz,:‘—l/z,k

Ax !

which can be replaced by the high-order finite-difference
scheme or the wavelet-based schemes [11], [12]. For (2)
and (3), the magnetic field is updated similarly.

n+1/2
JH(y) _ x,i,k—1/2
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B. Nonlinear Dispersive Anisotropic Perfectly Matched
Laver .

Starting with a constitutive relation between the flux den-
sity D, and the electric field E,, in the medium of frequency
. dependent relative dielectric constant ¢,.(w), we write in the
frequency domain as in 7],
Dy(w) = ozr(w) By (w) - ©)
The time-harmonic Ampére’s law within the APML is writ-
ten as ¢

OH,(w) OH,(w)

. Sp 8y =
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where )
_ o¢
Sg = Kg + jwep (11)

for £ = z,y and 2. The APML parameters x; and o¢ nor-
mally have an polynomial grading.

We introduce now two auxiliary variables D, and £, de-
fined by

D) = oer(w) = By(w) (12)
v
and
- 1 -
Eyw) = e, (w)’Dy(w) . (13)

The variables D, and £, represent the equivalent flux den-
sity and the equivalent eleciric field in the APML loss space,
respectively. Substituting (12) into (10), and applying the
usual ADE procedure of the inverse Fourier transform, i.e.
. replacing the factor jw with differentiation 3/3%, we obtain

OHu(t) _OH.(1) _ ODy(1)

Tz
dz dx oo +60Dy(t)' a9

Equation (14) is discretized using the semi-implicit
scheme for the right hand side of the equation, yielding
nil _ 2E0K: — O AL,
vk T g0k, 4 o AL VHF
! 2€0At 5H(y)
2eqk, + 0 AL ’

(15)

where §H() is again the spatial discrete derivative of the
magnetic field (8) or the high-order counterparts.

Now the linear and nonlinear dispersive properties are im-
plemented by the auxiliary differential equation. From (13)
we can write

Dy(w) = Eosr(tf)éy (w)

= g0y (W)
+ »}ﬁ(lz‘near)(w) + ﬁ(nonlz‘near)(w) ’

(16)

where Plinear) gnd Plrontinear) denote the linear and the
nonlinear polarization in the APML loss space, respectively.
By applying the inverse Fourier transform, the expression in
the time domain is obtained as

Dy(t) = cotoay(t)

) ) 17
+ 'P(Iznear) (t) + rp(nanhnear) (t) i ( )

The equivalent electric field in the APML loss space is
obtained by solving the single nonlinear equation (17), Lin-
ear and/or nonlinear polarizations are in general given by
the ADE technique in a recursive form, and they are to be
simply substituted in (17).

Finally, from {(12) and (13), we have

~ Sy =~
Eyw) = : Ey(w) . (18)
Yy
Substituting (11) into (18) leads to
5 oy .\ _ = Tz -
£, (ny+jw£0) - B, (nm+mo) Ca9

The inverse Fourier transform of (19) followed by discretiza-
tion gives
ol _ k50 — Oz AL - 1
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To summarize, computing (15), (17).and (20) in sequence
completes the update of the electric field. The magnetic
fields can be updated by the standard APML algorithm for
non-magnetic media. The influence of adding wavelet terms
will appear in the nonlinear constitutive equations (4) and
(17); note that, in the case of interpolating wavelet basis, the
coupling is only unilateral from scaling to wavelet coeffi-
cients. '
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C. Time Discrete Equations for Nonlinear and Dispersive
Polarization

For example, the linear Lorentz dispersion of an oscillat-
ing frequency wy,, a dumping factor dz, and a dielectric con-
stant change Aey,

5 EQAELQJ% ~
P, =
is implemented by the discrete recursive form as
Prt = ap PR+ b PRt 4 o BT (22)
with the coefficients
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The instantaneous Kerr nonlinearity is given by
Prtt = gy (E71Y? (26)

The Raman effect is a retarded dispersive nonlinear
process, which is modeled under the so-called Bom-
Oppenheimer approximation [13] by

Pg(t) = eo E(2) fo t Xi (e - O)E* ()t

= &E(1) [x7 ©) + B0

27

where Xg)(t) is a time response function of dumped har-

monic oscillation

X2 (1) = % exp(~t/m) sin(t/m)ult)

and “+” denotes the convolution integral. This is discretized
by introducing an auxiliary variable S as

(28)

" — gpS™ + bpS + g (E)? 29
with
2 — whAt?
30
ag 14 6nAt (30
1 — drAs
b = - 31
R 14 6pAt° (31)
_ (3) 2 A42
— (1-—a)xy whdt ’ 32)
1+ dpAt

where wpg is the oscillating frequency and é 5 the dumping
factor of the Raman effect, and finally followed by

PE+1 = SOEu-a+1$n+l . (33)

11I. NUMERICAL EXPERIMENT

We have modeled the instantaneous Kerr nonlinearity and
the Lorentz linear dispersion. The absorption of an electro-
magnetic pulse in the nonlinear dispersive media has been
investigated for 5 to 50 layers of the APML. The material
parameters and the calculation conditions are identical to
those in [8] except that the high-order FDTD scheme based
on the biorthogonal interpolating scaling functton of 10th
order (DD1) has been applied [9]; this scheme corresponds
in numerical dispersion to approximately the 10th to 14th-
order FD'TD derived by the Taylor series expansion. The
APML js terminated by a perfect electric conductor (PEC)
wall implemented by mirroring the field coefficients. _

The space step has been chosen to be Az = Az = 0.0125
pm for the standard FDTD and Az = Az = 0.05 pm
for the DDy scheme. The absorption has been evaluated
by detecting a relative local error in the analysis region
shown in Fig. 1. In order to save the computational re-
gion, the boundary conditions are set to be the perfect mag-
netic conductor (PMC) walls at z = z = 0 pm, and the
interface between the real domain and the PML has been
placed at z = =z = 2.5 um. The APML conductance has
fourth-order polynomial grading with the maximum value
of Tppaz = 1/(307mfeco ) [14].

PEC

PMC
034

2.5 Um

excitation region

detectio
propagation \
________ >

PMC

2.5 Im

Fig. 1. The analysis region to evaluate the locai reflection error.

The carrier frequency of the excitation pulse is 231 THz,
i.e. the free-space wavelength is Ao = 1.3 um; the time en-
velope is a raised cosine function having approximately 10
carrier cycles in it, which corresponds to the —20 dB band-
width of approximately 80 THz. The transverse profile of
the pulse is a hyperbolic secant function with its full width
at half magnitude (FWHM) of 0.65 um, The media has a in-
stantaneous Kerr nonlinearity of X((Js) = 2.0 x 10720 m?/v?,
and a linear Lorentz dispersion of wy, = 9.0 x 10 radfs,
8p = 5.0 % 10% I/s, Aep = 3.0, and €5, = 6.05,

With this choice, the numerical dispersion is sufficiently
small compared to the Lorentz dispersion, and the carrier
frequency is in the range of anomalous dispersion of the
Lorentz media; the group velocity dispersion parameter 3o
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ranges from —100 to —5 ps*/m over the bandwidth from 190
to 270 THz, where temporal soliton pulse can be formed by
an excitation with sufficient intensity, i.e. 7 x 10° V/m. The
reference structure has 7.5 pm x 7.5 pm region terminated
with perfect electric conductor (PEC) walls instead of PML.

The resulting frequency responses of the absorption are
plotted in Fig. 2 for the standard FDTD and for the DD,
scheme. It is demonstrated in the results that the absorption
improves as the number of layers increases to as large as
50 for the high-order scheme, while only marginal improve-
ment is observed for the standard FDTD. Preliminary exper-
iments have shown that the standard FD'TD exhibits —70 dB
absorption with 10 layers for the weaker nenlinearity of less
initial pulse amplitude 2 x 10% V/m, and less than —100 dB
for linear media,

For the DDy scheme, due to the small numerical dis-
persion error, the cell size is four times larger than that for
the FDTD, so is the actual thickness of the APML., while
the number of layers is the same; in other words, the 50
APML for the DDy scheme corresponds in thickness to
a 200 APML for the FDTD. Thus the thicker APML have
avoided reflection of the highly nonlinear pulse in the DD 34
scheme.

IV. CONCLUSION

Larger improvement has been observed in the absorption
of the nonlinear dispersive wave for the high-order FDTD
scheme than for the standard FDTD. Significantly thick lay-
ers are required for better absorption of such a highly non-
linear wave. This fact implies that there still exists some

possibility of optimizing the APML. parameters to achieve
better absorption.
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