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Abstract- A consistent r-&rmulatian of the anisatropic perfectly 
matched layer (APML) absorbing boundary has been presented for 
generst nanhear dispersive media. The APML is then sdopted in the 
high-order finite-difference-based schemes, and improved absorption 
has been arhievfd. 
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I. INTRODUCTION 

Time-domain numerical techniques are of primary impor- 
tance in the analysis of nonlinear pulse propagation since the 
principle of superposition no longer holds and frequency- 
domain techniques are basically inapplicable. 

In order to model the linear and nonlinear dispersive re- 
sponse functions such as the Lore& dispersion and the Ra- 
man effects, a z-transform technique [I], 121 and a convolu- 
tion integral technique combined with a system of differen- 
tial equations [3], [4], [5] have been employed. This convo- 
lution technique formulates the relation between the polar- 
ization and the electric flux density, which saves some mem- 
ory with the expense of solving a system of equations. The 
auxiliary differential equation (ADE) technique has been ap- 
plied to the formulation of the polarization current to avoid 
the system of equations for the linear dispersion case [6] and 
for a second-order nonlinear case [7]. 

We have implemented the nonlinear and dispersive 
anisotropic perfectly matched layer (APML) [S], and more- 
over, adopted the APML. in the high-order finite-difference 
time-domain (FDTD) schemes of Maxwell’s equations 
based on the bionhogonal interpolating scaling function [9]; 
based only on the scaling function, the scheme is equivalent 
to the FDTD schemes of high spatial-order derived by the 
Taylor series expansion. 

The formulation of the material property is based on the 
aforementioned ADE technique with modification to polar- 
ization, and the constitutive equation in the FDTD scheme 
is formulated by simple modification to the original APML 
for lossy media [7]. In this paper, the performance of the ab- 
sorption by the APML has been investigated for high-order 
FDTD-based schemes. 

II. THEORY 

A. Discretization of Maxwell’s Equation for Linear and 
Nonlinear Dispersive Media 

We start with the two-dimensional TE polarized wave 
propagating in the zz-plane of the Cartesian coordinates rep- 
resented by Maxwell’s equations 

aH, aH, 

az ax 
Jgia2, (1) 

aE*. affz 
az pat ’ 

(2) 

8% affz 
az = -Pa I (3) 

where D denotes the electric flux density, E the electric 
field, H the magnetic field, and J the source excitation cur- 
rent. In order to obtain a consistent formulation both in the 
APML and the normal media, contrary to the previously pro- 
posed techniques [6], [7], polarization is used to represent 
the dispersive and the nonlinear material properties. The 
constitutive equation is written as 

D, = EOEcoEy + py(lmeor) + p-1 , (4) 

where ~0 is the dielectric constant of free space, E, is the 
relative dielectric constant in the limit of infinite frequency. 
The linear and third-order nonlinear polarization of interest 
are written respectively by 

p(L%necw) = 
Y &)E, (5) 

and 
p(“o”h’ar’) = 

Y eox@)E, > (‘3 

where x(l) denotes the linear susceptibility and x@) the 
thirdader nonlinear susceptibility. 

The time evolution equation of D and H is obtained by 
the standard Yee’s leapfrog algorithm [lo], i.e. for (1) 
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where n is the time step index, i and k are the space step 
indices, and the space-time discrete value of electric or mag- 
netic field 4(x, I, t) for < = z, y, z is defined by F& E 

F,(iAz, kAz, nAt). Notation 6H(y)‘is the spatial discrete 
derivative of the magnetic field 

which can be replaced by the high-order finite-difference 
scheme or the wavelet-based schemes [I I], [l2]. For (2) 
and (3), the magnetic field is updated similarly. 

B. Nonlinear Dispersive Anisorropic Perfectly Matched 
Layer 

Starting with a constitutive relation between the flux den- 
sity D, and the electric field E, in the medium of frequency 
dependent relative dielectric constant Ed, we write in the 
frequency domain as in [7], 

B,(w) = EOET(W)&(W) (9) 

The time-harmonic Amp&e’s law within the APhIL is writ- 
ten as I 

for E = z, y and z. The APML parameters ‘cc and cr5 nor- 
mally have an polynomial grading. 

We introduce now two auxiliary variables 4 and & de- 
fined by 

(12) 

and 

The variables 4 and $ represent the equivalent flux den- 
sity and the equivalent electric field in the APML loss space, 
respectively. Substituting (12) into (IO), and applying the 
usual ADE procedure of the inverse Fourier transform, i.e. 
replacing the factor jw with differentiation a/at, we obtain 

Equation (14) is discretized using the semi-implicit 
scheme for the right hand side of the equation, yielding 

where &H(Y) is again the spatial discrete derivative of the 
magnetic field (8) or the high-order counterparts. 

Now the linear and nonlinear dispersive properties are im- 
plemented by the auxiliay differential equation. From (13) 
we can write 

qk4 = EOE&)%(W) 

= E&&(W) (16) 
+ p(tz”‘~~,(w) + p(m&vqw) , 

where @linear) and p(nonrznear) denote the linear and the 
nonlinear polarization in the APML loss space, respectively. 
By applying the inverse Fourier transform, the expression in 
the time domain is obtained as 

The equivalent electric field in the APML loss space is 
obtained by solving the single nonlinear equation (17). Lin- 
ear and/ or nonlinear polarizations are in general given by 
the ADE technique in a recursive form, and they are to be 
simply substituted in (17). 

Finally, from (12) and (l3), we have 

i;,(w) = ; B,(w) (18) 
Y 

Substituting (I I) into (IS) leads to 

The inverse Fourier transformof (19) followed by discretiza- 
tion gives 

To summarize, computing (15), (17) and (20) in sequence 
completes the update of the electric field. The magnetic 
fields can be updated by the standard APML algorithm for 
non-magnetic media. The influence of adding wavelet terms 
will appear in the nonlinear constitutive equations (4) and 
(17); note that, in the case of interpolating wavelet basis, the 
coupling is only unilateral from scaling to wavelet coeffi- 
cients. 



C. Time Discrete Equations for Nonlinear and Dispersive 
Polarization 

For example, the linear Lorentz dispersion of an oscillat- 
ing frequency WL, a dumping factor Jr. and a dielectric con- 
stant change Ae, 

is implemented by the discrete recursive form as 

P;+’ = QP; + bLP,n-’ + cLE” 

with the coefficients 

br. = - 
1 - 6LAt 
1+6LAt’ 

CL = 
EoAs&At’ 

1+6LAt 

The instantaneous Kerr nonlinearity is given by 

pn+’ = EOXf) (E”+‘)3 K (26) 

The Raman effect is a retarded dispersive nonlinear 
process, which is modeled under the so-called Bom- 
Oppenheimer approximation [ 131 by 

h%(t) = &d(t) 1 t&t - t’)EZ(t’)dt’ 
(27) 

= O(t) [&) *E’(t)] > 

where $‘(t) is a time response function of dumped hx- 
manic oscillation 

,-&j(t) = ~f)exp(-t/rz) sin(t/Tl)u(t) , (28) 

and “a” denotes the convolution integral. This is discretized 
by introducing an auxiliary variable S as 

S”+’ = a&T + b&7-’ + CR (En)’ (29) 

with 

aJ$ = 
2 - &At2 
l+bEAt ’ 

bB = - 
1 - 6RAt 
1+6RAt’ 

CR = 
(1 - a)#w;At2 

1+6RAt ’ 

(30) 

(31) 

(32) 

where WR is the oscillating frequency and 6~ the dumping 
factor of the Raman effect, and finally followed by 

,;+I = @“f’s”+ (33) 

III. NUMERICAL EXPERIMENT 

We have modeled the instantaneous Kerr nonlinearity and 
the Lorentz linear dispersion. The absorption of an electro- 
magnetic pulse in the nonlinear dispersive media has been 
investigated for 5 to 50 layers of the APML. The material 
parameters and the calculation conditions are identical to 
those in [8] except that the high-order FDTD scheme based 
on the biorthogonal interpolating scaling function of 10th 
order (DDlo) has been applied [9]; this scheme corresponds 
in numerical dispersion to approximately the 10th to 14th. 
order FDTD derived by the Taylor series expansion. The 
APML is terminated by a perfect electric conductor (PEC) 
wall implemented by mirroring the field coefficients. 

The space step has been chosen to be Ax = AZ = O.Oli5 
pm for the standard FDTD and Ax = AZ = 0.05 ~III 
for the DDIo scheme. The absorption has been evaluated 
by detecting a relative local error in the analysis region 
shown in Fig. 1. In order to save the computational re- 
gion, the boundary conditions are set to be tbe perfect mag- 
netic conductor (PMC) walls at 5 = z = 0 @II, and the 
interface between the real domain and the PML has been 
placed at z = z = 2.5 pm. The APML conductance has 
fourth-order polynomial grading with the maximum value 
of umaz = 1/(307~,,‘cmAz) [14]. 

P 
E 
5 

2.5 7m 

The carrier frequency of the excitation pulse is 231 THz, 
i.e. the free-space wavelength is X0 = 1.3 pm; the time en- 
velope is a raised cosine function having approximately 10 
carrier cycles in it, which corresponds to the -20 dB band- 
width of approximately 80 THz. The transverse profile of 
the pulse is a hyperbolic secant function with its full width 
at half magnitude (FWHM) of 0.65 pm. The media has a in- 
stantaneous Kerr nonlinearity of ,$ = 2.0 x IO-*’ m2N2, 
and a linear Lorentz dispersion of wp = 9.0 x 1Ol4 r&/s, 
6, = 5.0 x log I/s, Ae, = 3.0, and E, = 6.05. 

With this choice, the numerical dispersion is sufficiently 
small compared to the Lorentr dispersion, and the carrier 
frequency is in the range of anomalous dispersion of the 
Lorentz media; the group velocity dispersion parameter pz 
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ranges from -100 to -5 ps’/m over the bandwidth from 190 
to 270 THz, where temporal soliton pulse can be formed by 
an excitation with sufficient intensity, i.e. 7 x lo9 V/m. The 
reference structure has 7.5 pm x 7.5 pm region terminated 
with perfect electric conductor (PEC) walls instead of PML. 

The resulting frequency responses of the absorption arc 
plotted in Fig. 2 for the standard FDTD and for the DD to 
scheme. It is demonstrated in the results that the absorption 
improves as the number of layers increases to as large as 
50 for the high-order scheme, while only marginal improve- 
ment is observed for the standard FDTD. Preliminary exper- 
iments have shown that the standard FDTD exhibitz -70 dB 
absorption with 10 layers for the weaker nonlinearity of less 
initial pulse amplitude 2 x lo9 V/m, and less than -100 & 
for linear media. 

For the DDlo scheme, due to tli; small numerical dis- 
persion error, the cell size is four ti&.+s larger than that for 
the FDTD, so is the actual thickness of the APML, while 
the number of layers is the same; in other words, the 50 
APML for the DDlo scheme corresponds in thickness to 
a 200 APML for the FDTD. Thus the thicker APML have 
avoided reflection of the highly nonlinear pulse in the DD 10 
scheme. 

Iv. CONCLUSION 

Larger improvement has been observed in the absorption 
of the nonlinear dispersive wave for the high-order FDTD 
scheme than for the standard FDTD. Significantly thick lay- 
ers are required for better absorption of such a highly non- 
linear wave. This fact implies that there still exists some 
possibility of optimizing the APML parameters to achieve 
better absorption. 

ACKNOWLEDGEMENT 

The authors wish to acknowledge the Humboldt Foun- 
dation, Germany, for the research fellowship provided to 
M. Fujii, and the Deutsche Forschungsgemeinschaft and 
NSF CAREER Award for the sponsorship to the summer re- 
search stay of M. Tentzeris at the University of Technology 
Munich. 

REFERENCES 

111 

[Zl 

131 

[41 

151 

D.M.Sullivnn, “Nonlinear FDTD formulations using z-tramfmms”, 
IEEE Trans. Microwave i”*eory Tech., vol. 43, no. 3, pp. 676482, 
Mar. 1995. 
D.M.Sullivan, J.Liu, and M.Kuzy?i, “Three-chmens~onal optical pulse 
simulation using the FOTD metbad”. IEEE Trans. M~crowuve Theory 
Tech., “cd. 48. “0.7, pp. ,127-l 133. July 2000. 
PM Cowjian. A.TaRove, RMJoseph, and S.C Hagness, “Compu- 
tational modeling of femtosecond optical sohmns fmm Maxwell’s 
ypi) IEEE J. QuMtum Net.. vol. 28, no. 10, pp. 24162422, 

RMloseph, P.M.Goojian. and A.TaAove. “Direct time integration 
of Maxwell’s equations in two-dimemmnal dielecoic wavegwdes for 
propa@io” and scatrerin~ of ferntosecondelectmma~~~tic salitons”, 
OprirsLz”., “01. 18, no. 7, pp. 491-493. Apr. 1993. 
P.M.Goojm~ and YSilbcrberg. “Numerical simulations af light but- 
lets using the full-veaor time-dependent nonlinear M&well qua- 
tlO”S”, J. op. sue. Am. B, “0,. 14, “0. I,. pp. 3253-3260, ,997. 

(61 M.Oko”iwslo, M.Mmrwski. and M.A.Smchly, “Simple treavnent 
of multi-tam dispcnio” in FDTD”, lEE8 Microwaw Gurded Wave 
Letr, WI. 7, no. 5, pp. 121-123. my 1997. 

L7, A.TaAave and S.C.“aS”ess, Computational elecr,od,wmics. rhe 
finire-difference time-domain method. -2nd ed., Alfech House, 2000. 

[8] M.Fujii and P.Russer, “A “““linear and dispenive APML ABC for 
die m-m nEthods‘: IEEE Micr”waw! and wireless cm”ponms 
La,., “0,. 12, no. I,, pp. 444, November 2002. 

[9] M.Fqii and W.J.R.Hcefer, “Application of bionhogmal interpolatmg 
wavelets to the Galerki” Scheme of time &p?“de”t Maxwell’s qua- 
tions”, IEEE Micronme and Wireless Componem Len.. vd. 11. no. 
1. pp. 22-24, la”. 2001. 

[tOI K.S.Yee, “Numerical solution of innid bouw&y value problems in- 
volving Maxwell’s equation in isotropic media”, IEEE Tmns. Ante”- 
nar Pm,qn,ion. vol. 14, no. 5, pp. 302-307. May ,966. 

[t I] M.Fujii and W.J.R.Haefer. “A wavelet famatatio” of tinite difference 
method: Full vector analysis of optical waveguide ju”cuam”, IEEE 
fw&d ofQuantum Elec,ro”icr, vol. 37. no. 8. pp. 101*1029, A”& 

,121 E M.Te”tzeris. A.Cangellads, L.P.B.t‘atehi, and J.F.“.we,‘, “Mul- 
tiresolutm time-domain (MRTD) adaptive schemes using arbitwy 
reSO,UtiO”S of wa”elets”, IEEE Ml-r Joumol, WI. 50, no. 2, pp. 501- 
516, Mar. 2002. 

,131 R.W.Hellwarth. “Third-order optical susceptibilities of hquid and 
solids”. 1. Pq. Qunrum Necm, wt. 5. pp. 168. 1977. 

[14] S.D.Gedney. “An misompx perfectly matched layer absorbing me- 
dia for the rmncation of FDTD lattices”, IEEE Txms. Anrennas & 
Propqdon. vol.44 no. IZ. pp. 16X&1639, Dec. 1996. 

1132 


	MTT025
	Return to Contents


